APPENDIX 1: SEARCH METHODS FOR POLICY DOCUMENTS AND EVIDENCE-BASED REVIEWS

One of the features of this reporting series is the inclusion of sections which briefly review local policy documents (e.g. Ministry of Health Strategies and Toolkits) and international evidence-based reviews that are relevant to the prevention and or management of child and youth health issues. The approaches taken in these sections borrow heavily from the principles of the Evidence-Based Medicine (EBM) movement, which has emerged in recent years as a means of providing busy clinicians with up to date overviews of the evidence in particular areas [275,276]. Such overviews generally rely on reviewers collating all of the available evidence (published and unpublished trials, observational studies etc.), evaluating it in a rigorous manner, and then publishing the resulting synthesis of the evidence in a format which allows clinicians to evaluate quickly the effectiveness of the intervention(s) reviewed. While the evidence base for population level interventions is much less developed than that for individual patient therapies (as such interventions often have longer follow up times, more diffuse outcomes, and less readily identifiable “control” groups [277]), there is nevertheless a reasonable body of evidence emerging about the effectiveness of specific population level interventions.

The brief overviews presented in this report therefore aim to provide busy DHB staff with a logical starting point from which to consider the types of interventions available to address particular child and youth health issues. In preparing these overviews the methodology used was not exhaustive but rather involved searching a number of EBM journals and databases (e.g. the Cochrane Library) as well as Ovid MEDLINE and PubMed for systematic reviews of population level interventions in child and youth health (see Text Box below).

Methodology Used in Preparing Policy/Evidence-Based Review Sections

New Zealand (Health) Policy Documents

Each review section aims to provide an overview of Ministry of Health (or where appropriate, other Government Agency) policy documents and strategies relevant to the area. The Ministry of Health’s website (http://www.moh.govt.nz/moh.nsf) was searched for key documents. All identified documents were then scanned and the most relevant summarised, focussing on those which provided strategic guidance to DHBs on the prevention/population level management of the issues in question.

Evidence-Based and Other Reviews

The five databases listed below were searched for reviews considering the effectiveness of population level interventions to prevent and/or manage each of the issues in question. While this list is not exhaustive, the databases were selected on the basis of the calibre of the institutions publishing the reviews. In addition, the search strategy concentrated on publications which attempted to synthesise all of the available evidence, thereby providing as broad as possible coverage of the relevant literature. In general, only literature from 2000 onwards was searched, although earlier publications were included if there was a paucity of more recent information. While individual trials and protocols were not specifically sought, if there was no other relevant information available, an attempt was made to locate individual research reports or recommendations. While they are not totally comprehensive, it is nevertheless hoped that these brief overviews will provide a useful starting point for DHBs wishing to explore strategies to address particular child and youth health issues.

Evidence Based Medicine Reviews

This database allows seven EBM resources to be searched at once including The Database of Reviews of Effects (DARE), Health Technology Assessments (HTA) and the NHS Economic Evaluation Database (NHSEED) all produced by National Health Services’ Centre for Reviews and Dissemination at the University of York, U.K., The Cochrane Database of Systematic Reviews, and the ACP Journal Club.

National Guideline Clearinghouse

http://www.guideline.gov/ This is a searchable database of evidence-based clinical practice guidelines maintained by the Agency for Healthcare Research and Quality in the United States.

Centre for Reviews and Dissemination (CRD): This is a Department of the University of York and is part of the National Centre for Health Research (NCHR) (http://www.york.ac.uk/inst/crd/). While CRD produces the database of Review Effects (DARE), captured in the Evidence Based Medicine Review Database, searching the CRD site identifies other reviews not captured by DARE. This database is available through most local library services.
National Institute for Health and Clinical Excellence (NICE): This is an independent organisation based in the United Kingdom which provides national guidance on the promotion of good health and the prevention and treatment of ill health. (http://www.nice.org.uk/)

Guide to Community Preventive Services: Systematic Reviews and Evidence Based Recommendations: This guide was developed by the non-federal Task Force on Community Preventive Services whose members are appointed by the Director of the Centre for Disease Control and Prevention (CDC). The Community Guide summarises what is known about the effectiveness, economic efficiency, and feasibility of interventions to promote community health and prevent disease. (http://www.thecommunityguide.org/about/)

While undertaking this task it quickly became apparent that the quality of evidence varied considerably depending on the issue reviewed. In addition, in many cases, the research provided reasonably strong guidance about what did not work (e.g. current evidence suggests additional social support is ineffective in preventing preterm birth in high-risk women), but little advice on effective interventions.

Thus in many cases these brief overviews serve to highlight the current paucity of evidence on population level interventions to address child and youth health needs (although the absence of systematic/other reviews does not rule out the existence of individual studies in particular areas). In this context, while the search strategy utilised did not primarily aim to identify individual studies, or reviews of individual patient therapies, in cases where such studies were identified, and where no other systematic reviews were available, they were included under the heading of *Other Relevant Publications*. In such cases the reader needs to be aware that these studies were identified in a non-systematic manner and that their findings should therefore not be given the same weight as systematic reviews (e.g. Cochrane reviews) where all of the available evidence has been rigorously evaluated. The evidence-based review tables also include some topical New Zealand research publications.
Understanding Statistical Significance Testing

Inferential statistics are used when a researcher wishes to use a sample to draw conclusions about the population as a whole (e.g. weighing a class of 10 year old boys, in order to estimate the average weight of all 10 year old boys in New Zealand). Any measurements based on a sample however, even if drawn at random, will always differ from that of the population as a whole, simply because of chance. Similarly, when a researcher wishes to determine whether the risk of a particular condition (e.g. lung cancer) is truly different between two groups (smokers and non-smokers), they must also consider the possibility that the differences observed arose from chance variations in the populations sampled.

Over time, statisticians have developed a range of measures to quantify the uncertainty associated with random sampling error (i.e. to quantify the level of confidence we can have that the average weight of boys in our sample reflects the true weight of all 10 year old boys, or that the rates of lung cancer in smokers are really different to those in non-smokers). Of these measures, two of the most frequently used are:

P values: The p value from a statistical test tells us the probability that we would have seen a difference at least as large as the one observed, if there were no real differences between the groups studied (e.g. if statistical testing of the difference in lung cancer rates between smokers and non-smokers resulted in a p value of 0.01, this tells us that the probability of such a difference occurring if the two groups were identical is 0.01 or 1%). Traditionally, results are considered to be statistically significant (i.e. unlikely to be due to chance) if the probability is <0.05 (i.e. less than 5%) [278].

Confidence Intervals: A 95% Confidence Interval suggests that if you were to repeat the sampling process 100 times, 95 times out of 100 the confidence interval would include the true value. In general terms, if the 95% confidence intervals of two samples overlap, there is no significant difference between them (i.e. the p value would be ≥0.05), whereas if they do not overlap, they can be assumed to be statistically different at the 95% confidence level (i.e. the p value would be <0.05) [278].

The Use of Statistical Significance Testing in this Report

In the preparation of this report a large range of data sources were used. For the purposes of statistical significance testing however, these data sources can be considered as belonging of one of two groups: Population Surveys and Routine Administrative Datasets. The relevance of statistical testing to each of these data sources is described separately below:

Population Surveys: A number of indicators in this report utilise data derived from national surveys (e.g. 2006/07 New Zealand Health Survey), where information from a sample has been used to make inferences about the population as a whole. In this context statistical significance testing is appropriate, and where such information is available in published reports, it has been incorporated into the text accompanying each graph or table (i.e. the words significant, or not significant in italics are used to imply that a test of statistical significance has been applied to the data and that the significance of the associations are as indicated). In a small number of cases however information on statistical significance was not available in published reports, and in such cases any associations described do not imply statistical significance.

Numbers and Rates Derived from Routine Administrative Data: A large number of the indicators in this report are based on data derived from New Zealand’s administrative datasets (e.g. National Minimum Dataset, National Mortality Collection), which capture
information on all of the events occurring in a particular category. Such datasets can thus be viewed as providing information on the entire population, rather than a sample and as a consequence, 95% confidence intervals are not required to quantify the precision of the estimate (e.g. the number of leukaemia deaths in 2003–2007, although small is not an estimate, but rather reflects the total number of deaths during this period). As a consequence, 95% confidence intervals have not been provided for any of the descriptive data (numbers, proportions, rates) presented in this report, on the basis that the numbers presented are derived from the total population under study.

Rate Ratios Derived from Routine Administrative Data: In considering whether statistical significance testing is ever required when using total population data Rothman [279] notes that if one wishes only to consider descriptive information (e.g. rates) relating to the population in question (e.g. New Zealand), then statistical significance testing is probably not required (as per the argument above). If however, one wishes to use total population data to explore biological phenomena more generally, then the same population can also be considered to be a sample of a larger super-population, for which statistical significance testing may be required (e.g. the fact that SIDS in New Zealand is 10 times higher in the most deprived NZDep areas might be used to make inferences about the impact of the socioeconomic environment on SIDS mortality more generally (i.e. outside of New Zealand, or the 5 year period concerned)). Similarly, in the local context the strength of observed associations is likely to vary with the time period under study (e.g. in updating 5-year asthma admission data from 2004–2008 to 2005–2009, rate ratios for Pacific children are likely to change due to random fluctuations in annual rates, even though the data utilised includes all admissions recorded for that particular 5-year period). Thus in this report, whenever measures of association (i.e. rate ratios) are presented, 95% confidence intervals have been provided on the assumption that the reader may wish to use such measures to infer wider relationships between the variables under study [279].

The Signalling of Statistical Significance in this Report

In order to assist the reader to identify whether tests of statistical significance have been applied in a particular section, the significance of the associations presented has been signalled in the text with the words *significant*, or *not significant* in italics. Where the words *significant* or *non-significant* do not appear in the text, then the associations described do not imply statistical significance or non-significance.
APPENDIX 3: THE NATIONAL MINIMUM DATASET

Mode of Data Collection
The National Minimum Dataset (NMDS) is New Zealand’s national hospital discharge data collection and is maintained by the Ministry of Health. The information contained in the dataset has been submitted by public hospitals in a pre-agreed electronic format since 1993. Private hospital discharges for publicly funded events (e.g., births, geriatric care) have been submitted since 1997. The original NMDS was implemented in 1993, with public hospital information back loaded to 1988 [280]. Information contained in the NMDS includes principal and additional diagnoses, procedures, external causes of injury, length of stay and sub-specialty code and demographic information such as age, ethnicity and usual area of residence.

Dataset Quality and Changes in Coding Over Time
There are a number of key issues which must be taken into account when interpreting information from the NMDS. Many of these issues arise as a result of regional differences in the way in which data are coded and uploaded to the NMDS. These include:

1. Inconsistencies in the way in which different providers upload day cases to the NMDS, and how this has changed over time.
2. The changeover from the ICD-9 to ICD-10 coding system, and irregularities in the way in which diagnoses and procedures are allocated ICD codes.
3. Changes in the way in which ethnicity information has been collected over time and across regions (Appendix 6).

The following sections discuss the first two of these issues, while the third is discussed in Appendix 6, which reviews the way in which ethnicity information is collected and coded within the health sector.

1. Inconsistencies in the Uploading of Day-Cases to the NMDS
One of the key issues with time series analysis using hospital discharge data is the variability with which different providers upload day cases to the NMDS. Day cases are defined as cases that are admitted and discharged on the same day, with the “three hour rule” (treatment time >3 hours) traditionally being utilised to define an admission event. In contrast patients who spend at least one (mid)night in hospital are classified as inpatients irrespective of their length of stay [281].

In the past, there have been significant regional variations in the way in which different providers have uploaded their day cases to the NMDS, leading to problems with both time series analysis and regional comparisons. These inconsistencies have included:

1. During the mid 1990’s, a number of providers began to include A&E events as day cases if the total time in the Emergency Department (including waiting time) exceeded 3 hours, rather than uploading only those whose actual treatment time exceeded 3 hours [281]. New Zealand Health Information Service provided feedback which rectified this anomaly and since January 1995 the correct procedure has been used (these additional cases were coded using medical and surgical sub-specialty codes and are thus difficult to filter out using traditional Emergency sub-specialty filters).

2. Over time, a number of providers have become more efficient at recording the time of first treatment within the Emergency Department (rather than time of attendance) and thus during the late 1990s and early 2000s have become more efficient in identifying emergency department cases which meet the 3-hour treatment rule and are thus eligible to be uploaded to the NMDS. This has resulted in a large number of additional cases being uploaded to the NMDS, particularly in the upper North Island.
3. In addition, some providers admit cases to their short stay observation units while other providers do not, leading to regional variations in the appearance of day cases in the NMDS [100].

Previous Attempts to Address Inconsistent Uploading at the Analytical Stage

When producing their annual Hospital Throughput reports, the Ministry of Health has adopted the following filter to ensure regional and time series comparability with respect to day patient admissions [100]. In its analyses it excludes all cases where:

1. the admission and discharge date are the same (length of stay = 0)
2. and the patient was discharged alive
3. and the health specialty code on discharge is that of Emergency Medicine (M05, M06, M07, and M08).

While this coding filter succeeds in ensuring a degree of comparability between regions and across time (although it fails to correct the anomalies occurring during the mid 1990s when A&E cases were uploaded using medical sub-specialty codes), the exclusion of emergency day cases from time series analysis has a number of limitations including:

1. Exclusion of only those with a length of stay of 0 days means that those emergency cases who begin their treatment late at night and are discharged in the early hours of the following morning (up to ¼ of emergency cases have a length of stay of 1 day in some DHBs) are included as genuine hospital admissions, whereas those who begin their treatment early in the morning and are discharged late in the afternoon or the evening of the same day are excluded.

2. With a move towards the development of specialist paediatric emergency departments in larger urban centres (e.g. Auckland), there remains the possibility that some larger DHBs are now seeing and treating a number of acute medical patients within the emergency setting, while in regional centres similar patients continue to be assessed on the paediatric medical ward / assessment unit and thus receive a paediatric medical specialty code. The exclusion of all emergency presentations from time series and sub-regional analysis may thus differentially exclude a large portion of the workload occurring in large urban centres where access to specialist advice and treatment is available within the Emergency Department setting.

The potential impact of inconsistent uploading of day cases to the NMDS is likely to be greatest for those conditions most commonly treated in the emergency department setting. Analysis of 2001–2003 hospital admission data suggests that >1/3 of NMDS emergency department discharges for those 0–24 years were due to injury, with another 1/3 were due to ambulatory sensitive conditions (e.g. asthma, gastroenteritis, respiratory infections). In contrast, only 2% of those presenting with bacterial meningitis and 4% of those with septic arthritis were discharged with an emergency sub-specialty code.

Further sub-analysis of these two admission categories however demonstrated that inclusion / exclusion of emergency department admissions had quite different effects depending on the category of admission under study (injury vs. ambulatory sensitive admissions) and whether the region had access to a specialist Paediatric Emergency Department. In this analysis the Wider Auckland Region, (comprising 1/3 of the NZ population and whose residents have access to specialist Paediatric Emergency Departments) was compared to the rest of NZ. For ambulatory sensitive admissions, exclusion of emergency department cases resulted in Auckland’s admission rates being consistently lower than in the rest of New Zealand. It was only when emergency cases were included in this analysis that Auckland’s admission rates began to approximate those of the rest of NZ. In contrast for injuries, inclusion of emergency department cases resulted in hospital admissions in the Auckland Region consistently exceeding the rest of New Zealand. It was only when emergency cases were excluded from the analysis that Auckland’s injury admission rates began to approximate those of the rest of NZ. (These findings occurred despite Auckland having a similar proportion of children living in the most deprived NZDep small areas as the rest of NZ).
Loosely interpreted, the findings of this analysis suggest that the workload of large specialist paediatric emergency departments must not be discounted when examining trends in ambulatory sensitive or other medical admissions, as it is only when emergency cases are included in the analysis that the admission rates of the Wider Auckland Region (with its access to Specialist Paediatric Emergency care) begin to approximate the rest of NZ. In contrast, it is possible that specialist paediatric emergency departments have much less of an influence on admission thresholds for injury, with these being handled in a similar manner by different emergency departments across the country. Thus for injury data, the greater tendency for some emergency departments to upload their cases to the NMDS must be taken into account in any analysis.

Implications for Interpreting Time Series Analyses in these Reports
Throughout this report, analysis of time series and other information has been undertaken using unfiltered hospital admission data, with the exception of the injury and poisoning sections. Here emergency department discharges have been filtered out of the dataset, in an attempt to address some of the inconsistencies discussed above. Despite such an approach, there remains the potential for the inconsistent uploading of day cases to significantly influence the time series analyses presented in this report. In particular, such practices may lead to an over estimate of the number of medical admissions commonly treated in the emergency department setting (e.g. asthma, skin infections, respiratory tract infections), while at the same time the filtering out of injury/poisoning emergency cases may lead to undercounting for a number of more minor types of injury. Nevertheless, the filtering process utilised in this report are thought to provide the best balance when considering hospital admissions amongst those 0–24 years. Despite this, the reader must bear in mind that a potential for significant residual bias remains, when interpreting the time series analyses presented in this report.

2. Data Quality and Coding Changes over Time (ICD-9 and ICD-10)
Change Over from ICD-9 to ICD-10 Coding
From 1988 until June 1999, clinical information in the NMDS was coded using versions of the ICD-9 classification system (ICD-9 CM until June 1995, then ICD-9-CM-A until June 1999). From July 1999 onwards, the ICD-10-AM classification system has been used, although for time series analysis, back and forward mapping between the two classification systems is possible fusing pre-defined algorithms [280].

The introduction of ICD-10-AM represents the most significant change in the International Classification of Diseases (ICD) in over 50 years and uses an alphanumeric coding system for diseases in which the first character of the code is always a letter followed by several numbers. This has allowed for the expansion of the number of codes to provide for recently recognised conditions and to provide greater specificity about common diseases (there are about 8,000 categories in ICD-10-AM as compared to 5,000 in ICD-9). While for most conditions there is a reasonable 1:1 correspondence between ICD-9 and ICD-10 codes, for some this may lead to some irregularities in time series analysis [282]. Where possible such irregularities will be highlighted in the text, although care should still be taken when interpreting time series analysis across the 1999–2000 period as some conditions may not be directly comparable between the two coding systems.

Accuracy of ICD Coding
In recent years the Ministry of Health has undertaken a number of reviews of the quality of ICD coding in the NMDS. In the latest audit 2,708 events were audited over 10 sites during a 3 month period during 2001/2002. Overall the audit found that 22% of events required a change in coding, although this also included changes at the fourth and fifth character level. The average ICD code change was 16%, with changes to the principal diagnosis being 11%, to additional diagnoses being 23% and to procedure coding being 11%. There were 1625 external causes of injury codes, of which 15% were re-coded differently [283]. These findings were similar to an audit undertaken a year previously.

While the potential for such coding errors must be taken into consideration when interpreting the findings of this report, it may be that the 16% error rate is an overestimate,
as in the majority of the analyses undertaken in this report, only the principal diagnosis (with an error rate of 11%) is used to describe the reason for admission. In addition, for most admissions the diagnostic category (e.g. lower respiratory tract infections) is assigned using information at the 3 digit level (with the 16% error rate also including issues with coding at the 4th or 5th digit level).

3. Ethnicity Information in the NMDS
The reader is referred to Appendix 6 for a discussion of this issue.

Conclusion
In general the inconsistencies outlined above tend to make time series and (regional) comparative analyses based on the NMDS less reliable than those based on Mortality or Birth Registration data (where legislation dictates inclusion criteria and the type of information collected). While hospital discharge data still remains a valuable and reasonably reliable proxy for measuring the health outcomes of children and young people in this country, the reader is cautioned to take into consideration the biases discussed above, when interpreting the findings outlined in this report.
APPENDIX 4: THE BIRTH REGISTRATION
DATASET

Mode of Data Collection

Since 1995 all NZ hospitals / delivering midwives have been required to notify the Department of Internal Affairs (within 5 working day of delivery), of the birth of a live / stillborn baby 20+ weeks gestation or weighting >400g. Prior to 1995, only stillborn babies reaching 28+ weeks of gestation required birth notification. Information on the hospital’s notification form includes maternal age, ethnicity, multiple birth status, and baby’s sex, birth weight and gestational age. In addition parents must complete a Birth Registration Form within 2 years of delivery, duplicating the above information, with the exception of birth weight and gestational age, which are supplied only on hospital notification forms. Once both forms are received by Internal Affairs, the information is merged into a single entry. This 2-stage process it is thought to capture 99.9% of births occurring in New Zealand and cross checking at the receipting stage allows for the verification of birth detail [284].

Issues to Take into Account When Interpreting Information Derived from the Birth Registration Dataset

Because of the 2-stage birth registration process, the majority of variables contained within the birth registration dataset are >98% complete, and cross checking at the receipting stage (with the exception of birth weight and gestational age) allows for the verification of birth details. In addition, the way in which ethnicity is collected in this dataset confers a number of advantages, with maternal ethnicity being derived from the information supplied by parents on their baby’s birth registration form. This has the advantage of avoiding some of the ambiguities associated with hospital and mortality data, which at times have been reported by third parties. Changes in the way ethnicity was defined in 1995 however make information collected prior to this date incomparable with that collected afterwards. For births prior to 1995, maternal ethnicity was defined by ancestry, with those having half or more Māori or Pacific blood meeting ethnic group criteria, resulting in three ethnic groups, Māori, Pacific and non-Māori non-Pacific. For births after 1995 maternal ethnicity was self-identified, with an expanded number of ethnic categories being available and parents being asked to tick as many options as required to show which ethnic group(s) they belonged to. For those reporting multiple ethnic affiliations a priority rating system was introduced, as discussed Appendix 6 of this report.

Because this dataset captures 99.9% of births occurring in NZ, is >98% complete for most variables, collects self-reported ethnicity in a standard manner and is collated and coded by a single agency, information derived from this dataset is likely to be of higher quality than that derived from many of NZ’s other data sources. Limitations however include the relatively restricted number of variables contained within the dataset (e.g. it lacks information on maternal smoking, BMI or obstetric interventions) and the lack of cross checking for birth weight and gestational age (which is supplied only on the hospital notification form). The change in ethnicity definition during 1995 also prohibits time series analysis by ethnicity over the medium to long term. Finally, since the last report, the Ministry of Health has stopped providing stillbirth data in the Birth Registration Dataset, and thus all analyses based on this set are restricted to live births only. Each of these factors must thus be taken into account when interpreting information in this report that has been derived from the Birth Registration Dataset.
APPENDIX 5: NATIONAL MORTALITY COLLECTION

Mode of Data Collection
The National Mortality Collection is a dataset managed by the Ministry of Health, which contains information on the underlying cause(s) of death, as well as basic demographic data, for all deaths registered in New Zealand since 1988. Fetal and infant data are a subset of the Mortality Collection, with cases in this subset having additional information on factors such as birth weight and gestational age [285].

Each month Births, Deaths and Marriages send the Ministry of Health electronic death registration information, Medical Certificates of Cause of Death, and Coroners' reports. Additional information on the cause of death is obtained from the National Minimum Dataset (NMDS), private hospital discharge returns, the NZ Cancer Registry (NZCR), the Department of Courts, the Police, New Zealand Transport Agency (NZTA), Water Safety NZ, the Institute of Environmental Science and Research (ESR), media searching and from writing letters to certifying doctors, coroners and medical records officers in public hospitals. Using information from these data sources, an underlying cause of death (ICD-10-AM) is assigned by Ministry of Health staff using the World Health Organisation’s rules and guidelines for mortality coding [285].

Data Quality Issues Relating to the National Mortality Collection
Unlike the NMDS, where information on the principal diagnosis is coded at the hospital level and then forwarded electronically to the MoH, in the National Mortality Collection each of the approximately 28,000 deaths occurring in New Zealand each year is coded manually by Ministry of Health staff. For most deaths the Medical Certificate of Cause of Death provides the information required, although coders also have access to the information contained in the NMDS, NZ Cancer Registry, NZTA, Police, Water Safety NZ and ESR [286]. As a consequence, while coding is still reliant on the accuracy of the death certificate and other supporting information, there remains the capacity for a uniform approach to the coding which is not possible for hospital admission data.

While there are few published accounts of the quality of coding information contained in the National Mortality Collection, the dataset lacks some of the inconsistencies associated with the NMDS as the process of death registration is mandated by law and there are few ambiguities as to the inclusion of cases over time. As a consequence, time series analyses derived from this dataset are likely to be more reliable than that provided by the NMDS. One issue that may affect the quality of information derived from this dataset however is the collection of ethnicity data, which is discussed in more detail in Appendix 6 of this report.
APPENDIX 6: MEASUREMENT OF ETHNICITY

The majority of rates calculated in this report rely on the division of numerators (e.g. hospital admissions, mortality data) by Statistics NZ Estimated Resident Population denominators. Calculation of accurate ethnic specific rates relies on the assumption that information on ethnicity is collected in a similar manner in both the numerator and the denominator, and that a single child will be identified similarly in each dataset. In New Zealand this has not always been the case, and in addition the manner of collecting information on ethnicity has varied significantly over time. Since 1996 however, there has been a move to ensure that ethnicity information is collected in a similar manner across all administrative datasets in New Zealand (Census, Hospital Admission, Mortality, Births). The following section briefly reviews how information on ethnicity has been collected in national data collections since the early 1980s and the implications of this for the information contained in this report.

1981 Census and Health Sector Definitions
Earlier definitions of ethnicity in official statistics relied on the concept of fractions of descent, with the 1981 census asking people to decide whether they were fully of one ethnic origin (e.g. Full Pacific, Full Māori) or if of more than one origin, what fraction of that ethnic group they identified with (e.g. 7/8 Pacific + 1/8 Māori). When prioritisation was required, those with >50% of Pacific or Māori blood were deemed to meet the ethnic group criteria of the time [287]. A similar approach was used to recording ethnicity in health sector statistics, with birth and death registration forms asking the degree of Pacific or Māori blood of the parents of a newborn baby / the deceased individual. For hospital admissions, ancestry based definitions were also used during the early 1980s, with admission officers often assuming ethnicity, or leaving the question blank [288].

1986 Census and Health Sector Definitions
Following a review expressing concern at the relevance of basing ethnicity on fractions of descent, a recommendation was made to move towards self-identified cultural affiliation. Thus the 1986 Census asked the question “What is your ethnic origin?” and people were asked to tick the box(s) that applied to them. Birth and death registration forms however, continued to use the “fractions of blood” question until 1995, making comparable numerator and denominator data difficult to obtain [287]. For hospital admissions, the move from an ancestry based to a self-identified definition of ethnicity began in the mid-80s, although non-standard forms were used and typically allowed a single ethnicity only [288].

1991 Census and Health Sector Definitions
A review suggested that the 1986 ethnicity question was unclear as to whether it was measuring ancestry or cultural affiliation, so the 1991 Census asked two questions:
1. Which ethnic group do you belong to? (tick the box or boxes which apply to you)
2. Have you any NZ Māori ancestry? (if yes, what iwi do you belong to?)
As indicated above however, birth and death registrations continued with ancestry based definitions of ethnicity during this period, while a number of hospitals were beginning to use self-identified definitions in a non standard manner [288].

1996 Census and Health Sector Definitions
While the concepts and definitions remained the same as for the 1991 census, the ethnicity question in the 1996 Census differed in that:
• The NZ Māori category was moved to the top of the ethnic categories
• The 1996 question made it more explicit that people could tick more than 1 box.
• There was a new “Other European” category with 6 sub groups
As a result of these changes, there was a large increase in the number of multiple responses, as well as an increase in the Māori ethnic group in the 1996 Census [287].

Appendices and References - 561
Within the health sector however, there were much larger changes in the way in which ethnicity information was collected. From late 1995, birth and death registration forms incorporated a new ethnicity question identical to that in the 1996 Census, allowing for an expansion of the number of ethnic groups counted (previously only Māori and Pacific) and resulting in a large increase in the proportion of Pacific and Māori births and deaths. From July 1996 onwards, all hospitals were also required to inquire about ethnicity in a standardised way, with a question that was compatible with the 1996 Census and that allowed multiple ethnic affiliations [288]. A random audit of hospital admission forms conducted by Statistics NZ in 1999 however, indicated that the standard ethnicity question had not yet been implemented by many hospitals. In addition, an assessment of hospital admissions by ethnicity over time showed no large increases in the proportions of Māori and Pacific admissions after the 1996 “change over”, as had occurred for birth and death statistics, potentially suggesting that the change to a standard form allowing for multiple ethnic affiliations in fact did not occur. Similarities in the number of people reporting a “sole” ethnic group pre and post 1996 also suggest that the way in which information on multiple ethnic affiliations was collected did not change either. Thus while the quality of information available since 1996 has been much better than that previously, there remains some concern that hospitals continue to undercount multiple ethnic identifications and as a result, may continue to undercount Pacific and Māori peoples [288].

2001 Census and Health Sector Definitions
The 2001 Census reverted back to the wording used in the 1991 Census after a review showed that this question provided a better measure of ethnicity based on the current statistical standard [287]. The health sector also continued to use self-identified definitions of ethnicity during this period, with the Ethnicity Data Protocols for the Health and Disability Sector providing guidelines which ensured that the information collected across the sector was consistent with the wording of the 2001 Census (i.e. Which ethnic groups do you belong to (Mark the space or spaces that apply to you)?)

2006 Census and Health Sector Definitions
In 2004, the Ministry of Health released the Ethnicity Data Protocols for the Health and Disability Sector[289], with these protocols being seen as a significant step forward in terms of standardising the collection and reporting of ethnicity data in the health sector [290]. The protocols stipulated that the standard ethnicity question for the health sector was the 2001 Census ethnicity question, with respondents being required to identify their own ethnicity, and with data collectors being unable to assign this on respondent’s behalf, or to transfer this information from another form. The protocols also stipulated that ethnicity data needed to be recorded to a minimum specificity of Level 2 (see below) with systems needing to be able to store, at minimum, three ethnicities, and to utilise standardised prioritisation algorithms, if more than three ethnic groups were reported. In terms of outputs, either: sole / combination, total response, or prioritised ethnicity needed to be reported, with the methods used being clearly described in any report [289].

The following year, Statistics New Zealand’s Review of the Measurement of Ethnicity (RME), culminated in the release of the Statistical Standard for Ethnicity 2005[291], which recommended that:

1. The 2006 Census ethnicity question use identical wording to the 2001 Census.
2. Within the “Other” ethnic group, that a new category be created, or those identifying as “New Zealander” or “Kiwi”. In previous years these responses had been assigned to the European ethnic group.
3. All collections of official statistics measuring ethnicity have the capacity to record and report six ethnicity responses per individual, or at a minimum, three responses when six could not be implemented immediately.
4. The practice of prioritising ethnicity to one ethnic group should be discontinued.

At the 2006 Census however, a total of 429,429 individuals (11.1% of the NZ population) identified themselves as a New Zealander, with further analysis suggesting that 90% of the increase in those identifying as New Zealanders in 2006, had arisen from those identifying
as New Zealand European at the 2001 Census [292]. In 2009 Statistics NZ amended the Standard to reflect these issues [293] with the current recommendation being that future Censuses retain the current ethnicity question (i.e. that New Zealander tick boxes not be introduced) but that alongside the current standard outputs, where New Zealander responses are assigned to the Other ethnicity category, that an alternate classification be introduced, which combines the European and New Zealander ethnic groups into a single European and Other Ethnicity category for use in time series analysis (with those identifying as both European and New Zealanders being counted only once in this combined ethnic group [293]).

The Current Recording of Ethnicity in New Zealand’s National Datasets
In New Zealand’s national health collections (e.g. National Minimum Dataset and Mortality Collection, NZ Cancer Registry), up to 3 ethnic groups per person are stored electronically for each event, with data being coded to Level 2 of Statistics New Zealand’s 4 Level Hierarchical Ethnicity Classification System [280]. In this Classification System increasing detail is provided at each level. For example [289]:

- Level 1 (least detailed level) e.g. code 1 is European
- Level 2 e.g. code 12 is Other European
- Level 3 e.g. code 121 is British and Irish
- Level 4 (most detailed level) e.g. code 12111 is Celtic

Māori however, are identified similarly at each level (e.g. Level 1: code 2 is Māori...vs Level 4: code 21111 is Māori).

For those reporting multiple ethnic affiliations, information may also be prioritised according to Statistics New Zealand’s protocols, with Māori ethnicity taking precedence over Pacific > Asian/Indian > Other > European ethnic groups [289]. This ensures that each individual is counted only once and that the sum of the ethnic group sub-populations equals the total NZ population [288]. The implications of prioritisation for Pacific groups however are that the outcomes of those identifying as both Māori and Pacific are only recorded under the Māori ethnic group.

For those reporting more than 3 ethnic affiliations, the ethnic groups recorded are again prioritised (at Level 2), with Māori ethnicity taking precedence over Pacific > Asian/Indian > Other > European ethnic groups (for further details on the prioritisation algorithms used see [289]). In reality however, less than 0.5% of responses in the National Health Index database have three ethnicities recorded, and thus it is likely that this prioritisation process has limited impact on ethnic specific analyses [289].

Undercounting of Māori and Pacific Peoples in National Collections
Despite significant improvements in the quality of ethnicity data in New Zealand’s national health collections since 1996, care must still be taken when interpreting the ethnic specific rates presented in this report, as the potential still remains for Māori and Pacific children and young people to be undercounted in our national data collections. In a review that linked hospital admission data to other datasets with more reliable ethnicity information (e.g. death registrations and Housing NZ Corporation Tenant data), the authors of Hauora IV [294] found that on average, hospital admission data during 2000–2004 undercounted Māori children (0–14 years) by around 6%, and Māori young people by around 5–6%. For cancer registrations, the undercount was in the order of 1–2% for the same age groups. While the authors of Hauora IV developed a set of adjusters which could be used to minimise the bias such undercounting introduced when calculating population rates and rate ratios, these (or similar) adjusters were not utilised in this report for the following reasons:

1. Previous research has shown that ethnicity misclassification can change over time, and thus adjusters developed for one period may not be applicable to other periods [295].
2. Research also suggests that ethnic misclassification may vary significantly by DHB [295], and thus that adjusters developed using national level data (as in Hauora IV) may not be applicable to DHB level analyses, with separate adjusters needing to be developed for each DHB.
Further, as the development of adjusters requires the linkage of the dataset under review with another dataset, for which more reliable ethnicity information is available, and as this process is resource intensive, and not without error (particularly if the methodology requires probabilistic linkage of de-identified data) the development of a customised set of period and age specific adjusters was seen as being beyond the scope of the current project. The reader is thus urged to bear in mind, that the data presented in this report may undercount Māori and Pacific children to a variable extent (depending on the dataset used) and that in the case of the hospital admission dataset for Māori, this undercount may be as high as 5–6%.

Ethnicity Classifications Utilised in this Report and Implications for Interpretation of Results

Because of inconsistencies in the manner in which ethnicity information was collected prior to 1996, all ethnic specific analysis presented in this report are for the 1996 year onwards. The information thus reflects self-identified concepts of ethnicity, with Statistics NZ’s Level 1 Ethnicity Classification being used, which recognise 5 ethnic groups: European (including New Zealander), Māori, Pacific, Asian (including Indian) and Other (including Middle Eastern, Latin American and African). In order to ensure that each health event is only counted once, unless otherwise specified, prioritised ethnic group has been used.
APPENDIX 7: NZ DEPRIVATION INDEX

The NZ Deprivation Index (NZDep) is a small area index of deprivation, which has been used as a proxy for socioeconomic status in this report. The main concept underpinning small area indices of deprivation is that the socioeconomic environment in which a person lives can confer risks / benefits which may be independent of their own social position within a community [296]. They are thus aggregate measures, providing information about the wider socioeconomic environment in which a person lives, rather than about their individual socioeconomic status.

The NZDep was first created using information from the 1991 census, but has since been updated following each census. The NZDep2006 combines 9 variables from the 2006 census which reflect 8 dimensions of deprivation (Table 110). Each variable represents a standardised proportion of people living in an area who lack a defined material or social resource (e.g. access to a car, income below a particular threshold), with all 9 variables being combined to give a score representing the average degree of deprivation experienced by people in that area. While the NZDep provides deprivation scores at meshblock level (Statistics NZ areas containing approx 90 people), for the purposes of mapping to national datasets, these are aggregated to Census Area Unit level (≈1,000–2,000 people). Individual area scores are then ranked and placed on an ordinal scale from 1 to 10, with decile 1 reflecting the least deprived 10% of small areas and decile 10 reflecting the most deprived 10% of small areas [297].

Table 110. Variables used in the NZDep2006 Index of Deprivation [298]

<table>
<thead>
<tr>
<th>No</th>
<th>Factor</th>
<th>Variable in Order of Decreasing Weight in the Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Income</td>
<td>People aged 18–64 receiving means tested benefit</td>
</tr>
<tr>
<td>2</td>
<td>Employment</td>
<td>People aged 18–64 unemployed</td>
</tr>
<tr>
<td>3</td>
<td>Income</td>
<td>People living in households with income below an income threshold</td>
</tr>
<tr>
<td>4</td>
<td>Communication</td>
<td>People with no access to a telephone</td>
</tr>
<tr>
<td>5</td>
<td>Transport</td>
<td>People with no access to a car</td>
</tr>
<tr>
<td>6</td>
<td>Support</td>
<td>People aged <65 living in a single parent family</td>
</tr>
<tr>
<td>7</td>
<td>Qualifications</td>
<td>People aged 18–64 without any qualifications</td>
</tr>
<tr>
<td>8</td>
<td>Owned Home</td>
<td>People not living in own home</td>
</tr>
<tr>
<td>9</td>
<td>Living Space</td>
<td>People living in households below a bedroom occupancy threshold</td>
</tr>
</tbody>
</table>

The advantage of NZDep is its ability to assign measures of socioeconomic status to the elderly, the unemployed and to children (where income and occupational measures often don’t apply), as well as to provide proxy measures of socioeconomic status for large datasets when other demographic information is lacking. Small area indices have limitations however, as not all individuals in a particular area are accurately represented by their area’s aggregate score. While this may be less of a problem for very affluent or very deprived neighbourhoods, in average areas, aggregate measures may be much less predictive of individual socioeconomic status [296]. Despite these limitations, the NZDep has been shown to be predictive of mortality and morbidity from a number of diseases in New Zealand.

Note: As New Zealand’s national datasets have traditionally continued to use the previous Census’ domicile codes for 1–2 years after any new Census, all of the numerators (e.g. numbers of hospital admissions, deaths) and denominators in this report have been mapped to NZDep2001.
APPENDIX 8: AMBULATORY SENSITIVE HOSPITAL ADMISSIONS

The ASH analysis in this report was performed using two coding algorithms, the new Paediatric ASH Algorithm specifically developed by Anderson et al in conjunction with the New Zealand Child and Youth Epidemiology Service (NZCYES) (Table 191), and the old coding algorithm developed by Tobias and Jackson, which was used within the New Zealand health sector until 2008 (Table 192).

The development of the new Paediatric ASH Coding Algorithm involved four steps:

1. Identification of the most frequent causes of hospital admissions for children and young people in New Zealand using data from the National Minimal Dataset (NMDS).
2. Formation of a convening group to define avoidable morbidity for the purposes of the indicator and to identify key policy areas to be considered in the indicator.
3. Consultation with experts in the paediatric, public health and primary care fields to determine the influence of various policy areas on hospital admissions for the 42 conditions identified in step one. This was an iterative process with the initial feedback being re-circulated to the panel of experts for further consideration before hospitalisations were confirmed as either potentially avoidable or non potentially avoidable. Access to primary care was one of the policy areas considered, with the subset of conditions where the expert panel judged that hospitalisations could potentially be avoided by timely access to appropriate primary care being classified as ASH in the new coding algorithm.
4. Development of a final coding algorithm (Table 191) and consideration of appropriate filters.

The ASH classification finally developed is intended to be representative of hospitalisations that could potentially be prevented by access to primary care in the 0–14 year age group, but is not exhaustive. It is important to note that only conditions consulted on during the process described above were included in the ASH coding algorithm. For example while the majority of cases of epiglottitis can be prevented through vaccination against Hib, and therefore hospitalisations due to epiglottitis might be considered ambulatory sensitive, epiglottitis is rare and was not identified in step one of the process described above. Epiglottitis was therefore not consulted on and was not included in the ASH coding algorithm.

Injury and poisoning are also important causes of childhood morbidity and make up a large proportion of paediatric hospital admissions. However injury and poisoning were not consulted on during this process because of the greater tendency for some emergency departments to upload their cases to the NMDS than others, thus making it difficult to obtain consistent data across DHBs. Ideally injury will be incorporated into the ASH coding algorithm in the future if these data issues can be resolved.

The convening group also determined that a number of filters should be applied to this coding algorithm including:

- Neonatal Admissions (0–28 days) are specifically excluded (as issues arising in the context of a birth are likely to require different care pathways than those arising in the community, with the exception of neonatal tetanus and congenital rubella, which can be prevented by timely access of women to immunisation in primary care).
- Waiting List Admissions are specifically excluded, with the exception of Waiting List admissions for dental caries, as DHBs differ in the way these children are admitted around the country.
Table 191. New Paediatric ASH Codes Developed for the New Zealand Health Sector

<table>
<thead>
<tr>
<th>Ambulatory Sensitive Conditions</th>
<th>ICD 10 coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthma</td>
<td>J45, J46</td>
</tr>
<tr>
<td>Bronchiectasis</td>
<td>J47</td>
</tr>
<tr>
<td>Skin Infections</td>
<td>H000, H010, J340, L01–L04, L08, L980</td>
</tr>
<tr>
<td>Constipation</td>
<td>K590</td>
</tr>
<tr>
<td>Dental Caries</td>
<td>K02, K04, K05</td>
</tr>
<tr>
<td>Dermatitis and Eczema</td>
<td>L20–L30</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>A02–A09, R11</td>
</tr>
<tr>
<td>Gastro–Oesophageal Reflux</td>
<td>K21</td>
</tr>
<tr>
<td>Nutritional Deficiency</td>
<td>D50–D53, E40–E46, E50–E56, E58–E61, E63, E64</td>
</tr>
<tr>
<td>Bacterial/Non Viral Pneumonia</td>
<td>J13–J16, J18</td>
</tr>
<tr>
<td>Rheumatic Fever / Heart Disease</td>
<td>I00–I09</td>
</tr>
<tr>
<td>Otitis Media</td>
<td>H65–H67</td>
</tr>
<tr>
<td>Acute Upper Respiratory Tract Infection</td>
<td>J00–J03, J06</td>
</tr>
<tr>
<td>Vaccine Preventable Diseases:</td>
<td></td>
</tr>
<tr>
<td>Neonatal/Other Tetanus, Congenital Rubella</td>
<td></td>
</tr>
<tr>
<td>≥6 months: Pertussis, Diphtheria, Hepatitis B</td>
<td>A35, A36, A37, A80, B16, B180, B181, A33, A34, P350, B05, B06, B26, M014,</td>
</tr>
<tr>
<td>≥16 months Measles, Mumps, Rubella</td>
<td></td>
</tr>
<tr>
<td>ASH Urinary Tract Infection > 4 years</td>
<td>N10, N12, N300, N390, N309, N136</td>
</tr>
</tbody>
</table>

Filters: Codes Apply to Children 0–14 Years (excluding the neonatal period)
Acute and Arranged Admissions Only (except Dental Conditions where Waiting List included)

Note: Coding Algorithm developed by Pip Anderson, Elizabeth Craig, Gary Jackson and Martin Tobias in conjunction with the New Zealand Child and Youth Epidemiology Service
Table 192. Weightings Applied to Potentially Avoidable Hospital Admissions by Jackson and Tobias [101] and Subsequently Used by the New Zealand Ministry of Health [299]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Population Preventable</th>
<th>Ambulatory Sensitive</th>
<th>Injury Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculosis</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>HIV / AIDS</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Skin Cancers</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Oral Cancers</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td>0.7</td>
<td>0.3</td>
<td>0</td>
</tr>
<tr>
<td>Lung Cancer</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Breast Cancer</td>
<td>0.3</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>Nutrition</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Alcohol-Related Conditions</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ischemic Heart Disease</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>0.2</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>Other Infections</td>
<td>0.2</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>Immunisation-Preventable</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hepatitis / Liver Cancer</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sexually Transmitted Disease</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cervical Cancer</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Thyroid Disease</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.2</td>
<td>0.8</td>
<td>0</td>
</tr>
<tr>
<td>Dehydration</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Epilepsy</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>ENT Infections</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rheumatic Fever / Heart Disease</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hypertensive Disease</td>
<td>0.3</td>
<td>0.7</td>
<td>0</td>
</tr>
<tr>
<td>Angina</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Stroke</td>
<td>0.5</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>Respiratory Infections</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>CORD</td>
<td>0.6</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Asthma</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dental Conditions</td>
<td>0.4</td>
<td>0.6</td>
<td>0</td>
</tr>
<tr>
<td>Peptic Ulcer</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ruptured Appendix</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Obstructed Hernia</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Kidney / Urinary Infection</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cellulitis</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Failure to Thrive</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gangrene</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Road Traffic Injury</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Poisoning</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Swimming Pool</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Recreation Injury</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sport Injury</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Fire</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Drowning</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Suicide</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
APPENDIX 9: METHODS USED TO DEVELOP THE CHILDREN’S SOCIAL HEALTH MONITOR

Introduction

In response to deteriorating economic conditions in New Zealand and Australia in the late 2000s, a Working Group of health professionals from a range of organisations with an interest in child health was formed in early 2009. Over the course of the year, this Working Group discussed the conceptualisation of an indicator set to monitor the impact of the recession on child wellbeing, the types of indicators which might be included, and the criteria by which individual indicators should be selected. As a result of these discussions, it was proposed that a Children’s Social Health Monitor be developed, which comprised the following:

1. **A Basket of Indicators to Monitor Prevailing Economic Conditions**: Ideally, indicators would capture different facets of economic wellbeing (e.g. in a recession several quarters of negative growth (GDP) may precede upswings in Unemployment Rates, which in turn will influence the number of Children Reliant on Benefit Recipients.

2. **A Basket of Indicators to Monitor Children’s Wellbeing**: Ideally indicators would respond relatively quickly (e.g. months–small number of years) to family’s adaptations to deteriorating economic conditions (e.g. hospitalisations for poverty related conditions) and would provide an overview of family wellbeing from a variety of different perspectives.

Indicator Selection Criteria

In selecting these indicators, it was decided that only routinely collected data sources which were of good quality, and which provided complete population coverage would be used, in order to ensure the indicator set was methodologically robust and could be consistently monitored over time. In order to achieve this aim, the Working Group developed a set of selection criteria, against which candidate indicators were scored. These selection criteria included:

Conceptual Criteria

Criteria for Indicators to Monitor Prevailing Macroeconomic Conditions

1. Internationally recognised and reported measure of economic performance / wellbeing

2. Should impact on at least one facet of children’s wellbeing (i.e. the pathway(s) via which it impacts on children’s wellbeing should be relatively well understood, or an association between the indicator and wellbeing documented in the literature).

3. Likely to change in response to a recession (i.e. months–small number of years)

Criteria for Indicators to Monitor Children’s Health and Wellbeing

1. The condition is likely to be influenced by family’s physical adaptations to worsening economic conditions (e.g. saving on heating to pay for food, moving in with family to save on rent).

2. The condition is likely to be influenced by family’s psychological adaptations to worsening economic conditions (e.g. increased family conflict in response to financial stress).

3The Paediatric Society of New Zealand, the Population Child Health Special Interest Group of the Royal Australasian College of Physicians, the New Zealand Child and Youth Epidemiology Service, TAHA (the Well Pacific Mother and Infant Service), the Māori SIDS Programme, the Kia Mataara Well Child Consortium, the New Zealand Council of Christian Social Services, and academics from the Universities of Auckland and Otago
3. The condition exhibits a socioeconomic gradient (e.g. rates are higher in more deprived areas)
4. The condition is likely to respond to changing economic conditions in the short to medium term (e.g. months to 1–2 years)

Data Quality Criteria

Data Quality Criteria (for either of the above indicator categories)

1. Needs to be routinely collected
2. Available at the national level i.e. complete coverage of target population
3. Updated at least annually (although quarterly preferable)
4. Availability of consistent time series data going back several years (i.e. standard and stable method of data collection)
5. Distribution can be broken down by e.g. ethnicity, socioeconomic status, region

Selection of the Baseline Indicator Set

In mid-2009 a long list of candidate indicators (selected by means of a scan of the available literature, email consultation with child health networks, and the suggestions of Working Group members) were then scored against each of these criteria by Working Group members and other health professionals (n=20). Those scoring the indicators were also asked to select a Top Five Economic and Top Five Health and Wellbeing Indicators for inclusion in the Children’s Social Health Monitor. The resulting Top Five Economic and Wellbeing indicators (as determined both by criteria scoring and priority ranking) were:

Economic Indicators:
- Gross Domestic Product
- Income Inequality
- Child Poverty
- Unemployment Rates
- The Number of Children Reliant on Benefit Recipients

Child Health and Wellbeing Indicators:
- Hospital Admissions with a Social Gradient
- Mortality with a Social Gradient
- Infant Mortality
- Hospital Admissions and Mortality from Non-Accidental Injury
- Ambulatory Sensitive Hospital Admissions

Methodology for Developing the Hospital Admissions and Mortality with a Social Gradient Indicator

While all of the Top Five Economic Indicators, and a number of the Child Health and Wellbeing indicators already had established methodologies, the hospital admissions and mortality with a social gradient indicator had to be developed specifically for the Children’s Social Health Monitor. The methodology used to develop this indicator is outlined below:

Hospital Admissions

In considering which conditions should be included in the analysis of hospital admissions with a social gradient, the 40 most frequent causes of hospital admission in children aged 0–14 years (excluding neonates) were reviewed, and those exhibiting a social gradient (a rate ratio of ≥1.8 for NZDep Decile 9–10 vs. Decile 1–2; or for Māori, Pacific or Asian vs. European children) were selected. A small number of conditions with rate ratios in the 1.5–1.8 range were also included, if they demonstrated a consistent social gradient (i.e. rates increased in a stepwise manner with increasing NZDep deprivation) and the association
was biologically plausible (the plausibility of the association was debated by Working Group members).

Inclusion and Exclusion Criteria

Neonatal hospital admissions (<29 days) were excluded on the basis that these admissions are more likely to reflect issues arising prior to / at the time of birth (e.g. preterm infants may register multiple admissions as they transition from intensive care (NICU) → special care nurseries (SCBU) → the postnatal ward), and respiratory infections / other medical conditions arising in these contexts are likely to differ in their aetiology from those arising in the community.

For medical conditions, only acute and arranged hospital admissions were included, as Waiting List admissions are likely to reflect service capacity, rather than the burden of health need (e.g. the inclusion of Waiting List admissions would result in a large number of children with otitis media and chronic tonsillitis (who were being admitted for grommets and tonsillectomies) being included, and the demographic profile of these children may be very different from children attending hospital acutely for the same conditions).

For injury admissions, filtering by admission type was not possible, as a number of DHBs admitted injury cases under (now discontinued) ACC admission codes, making it difficult to distinguish between acute and waiting list admissions in this context. As with other NZCYES reports, all injury cases with an Emergency Department Specialty Code (M05–M08) on discharge were excluded as a result of inconsistent uploading of Emergency Department cases across DHBs (see Appendix 3 for further detail). This differential filtering however means that it is not possible to accurately compare the magnitude of the social gradients between the medical condition and injury categories, as they were derived using different methodologies (and social differences in Emergency Department vs. primary care attendances for minor medical conditions may have accounted for some of the social gradients seen). No such differential filtering occurred for mortality data however (see below), and thus the magnitude of the social differences seen in this context is more readily comparable.

Mortality

In the case of mortality, because in many instances, the number of deaths from a particular condition was insufficient to calculate reliable rate ratios by NZDep and ethnicity, the rate ratios derived from the analysis of hospital admission data were used to denote category membership. The most frequent causes of mortality in those 0–14 years (excluding neonates) were reviewed however, in order to ensure that no additional conditions making a large contribution to mortality had been missed by the analysis of hospital admission data. This identified two further conditions (which by analysis of mortality of data met rate ratio criteria); deaths from drowning and Sudden Unexpected Death in Infancy, which were then included in the coding algorithms (for both hospital admissions and mortality data). A number of deaths were also identified, which were attributed to issues arising in the perinatal period (e.g. extreme prematurity, congenital anomalies), but in order to preserve consistency with previous exclusion criteria (i.e. the exclusion of conditions arising in the perinatal period) these were not included in coding algorithms.

In Conclusion

While it is hoped that over time this indicator set will be expanded and further refined, it is intended that the NZ Child and Youth Epidemiology Service will monitor this core minimum indicator set on an annual basis, until the economic position of New Zealand children improves appreciably.
REFERENCES

http://www.oecd.org/document/4/0,3343,en_2649_34819_37836996_1_1_1,00.html

http://www.surgeongeneral.gov/topics/breastfeeding/calltoactiontosupportbreastfeeding.pdf

http://www.who.int/whr/2008/whr08_en.pdf

44. Ashton T. 2005. Recent developments in the funding and organisation of the New Zealand health system. Australia and New Zealand Health Policy 2(1) 9.

60. Langton J, Crampton P. 2008. Capitation funding of primary health organisations in New Zealand: are enrolled populations being funded according to need? *New Zealand Medical Journal* 121(1272) 47-58.

125. Bronchiolitis Guideline Team Cincinnati Children's Hospital Medical Center. 2010. Evidence-based care guideline for management of bronchiolitis in infants 1 year of age or less with a first time episode.

http://www.nhlbi.nih.gov/guidelines/asthma/asthgdln.pdf

221. Tylee A, Haller a, Graham T, et al. 2007. Youth-Friendly Primary-Care Services; How are we Doing and What More Needs to be Done? The Lancet May 5; 369(9572) 1653-73.

Appendices and References - 584

